

Author

Lindsey Purcell,
Urban Forestry Specialist,, Purdue University
Department of Forestry \& Natural Resources
www.fnr.purdue.edu

EXPERT
REVIEWED

Trees provide many benefits and value to property owners in functional, aesthetic, social, environmental - and even economic - ways. Value may be defined as the present worth of future benefits. Many of these benefits can be quantified by a dollar figure, and it is the responsibility of an appraiser to assign monetary value. Appraising trees and living landscape components can be challenging, and requires training, expertise and experience.

The methods used to value trees are published in The Guide for Plant Appraisal, $9^{\text {th }}$ Edition, authored by the Council of Tree and Landscape Appraisers (CTLA). The guide is endorsed by all the major arboriculture, horticulture and real estate industry organizations. When conducting an appraisal, be sure to use the current edition. The guide describes the various appraisal processes and gives examples of each. Although it is a good tool for the valuation of plants, it is only a guide and the procedures involved require care and experience.

The purpose of an appraisal is defined by the clients' needs. These needs may include tort claims, insurance claims, tax deductions, real estate assessment and proactive planning. An appraisal estimates the defined value of personal property, including plants. The
tree appraisal process is used to develop a supported estimate of current value.

Unfortunately, most appraisals are done after trees have been removed or damaged. This situation requires additional investigation and might include determining pre-casualty value or sampling on a local basis. The best time to conduct an appraisal is prior to any incident or damage. This is rarely done, however. If available, previous site records, tree assessments, site reviews, images and even a witness can help determine the tree's pre-damage condition. With all the facts gathered, it is the duty of the appraiser to determine the appropriate method and provide an unbiased valuation. The appraiser should document all activities related to the process, from initial contact with the client - including establishing the background information on the tree - to inspecting the site and formulating values.

Regardless of the appraisal method used, there are some primary factors to consider. The four major elements involved in properly assessing the value of a tree are size, species, condition and location. A thorough understanding of each is imperative; otherwise, the appraisal will lack credibility and significance for the case.

Tree condition or health is an important rating determination.

The species rating is a comparative value given to the tree or plant based upon its individual characteristics. Consideration is given to the plant's assets and its inherent qualities. This rating is provided by a council of experts in the area and will vary within regions around the country. Additionally, there can be variations in ratings within the state, relative to hardiness zones. Adjustments will be necessary based on subjective observation. Check the local chapter of the International Society of Arboriculture for more information on the ratings for your state.

The condition of the tree is a subjective determination made by the appraiser during the inspection. It is an assessment of the tree's structural integrity and health at the time of appraisal. Thought should be given to rooting, branching, health and vigor, any damage or wounds, and evidence of pest infestation. It is important to note the current condition as the most reasonable gauge for the rating determination.

The size of the plant is measured using common tools and industry standards. A diameter tape or tape measure can be used to measure trunk size, and is typically recorded as the diameter at 4.5 feet above grade, or shoulder height. Consult with the appraisal guide on proper sizing procedures.

The location factor involves the landscape value of the site and the placement of the tree on the property. Consider the location of the property, overall quality of the landscape, hardscape and related elements. Understand the tree's contribution to the site, its function and the aesthetics to determine how effectively the placement of the tree provides these benefits.

Location is one factor in determining a tree's value.

A diameter tape aids in calculating tree size.

After the primary plant and site assessments have been completed, determination of the proper approach is necessary. The Guide for Plant Appraisal details three basic methods for plant valuation: cost, income and market approaches. The approach chosen depends on the kind of property, purpose of the appraisal and quality of information for analysis. It may be necessary to use other methods, or a combination of approaches, in the appraisal process to verify the results.

The Cost Approach considers the amount in dollars to either repair damage to the tree or replace the tree. There are various methods to use within this approach:

Replacement Cost estimates the cost of replacing a tree in the same location with the same species and, if possible, of similar size. However, in most cases a tree is too large to be replaced by a single tree and still be of equal value. In those cases, appraisers may designate several smaller trees deemed collectively to be equivalent to the original tree. This becomes a matter of calculating the value of the replacement trees and their associated costs. Often, some type of settlement is involved in the negotiations, as well. This usually is found to be the most accurate determination of market value of the tree.

Trunk Formula (TFM) defines value in comparison to other trees of the same species. However, it does not necessarily provide adequate market value of the tree. The TFM often is used when the tree is too large to be replaced with typical nursery stock, and can be a good representation of overall value to the property. The basic value of a tree is the sum of two factors: the cost of transplanting the largest normally available tree of the same or comparable species, and the increase in value because of the larger size of the tree being appraised compared to the size of the replacement tree. An example can be found at the end of this publication.

The formula used in the process is stated as:

Value $=$ Basic Tree Cost x Species Rating \% x Condition Rating \% x Location Rating \%

- Basic Tree Cost is the Replacement Tree Cost + (Base Price x Adjusted Trunk Area, or ATA). Base price is determined to be $\$ 65$ for Indiana. ATA is the area of the tree trunk in square inches measured at standard height of 4.5 feet, less the area of the largest available transplantable tree, which is determined to be $\$ 800$ in Indiana. A table of conversions from Diameter at Breast Height, or DBH, to ATA is available in the CTLA guide.
- Species rating is the factor assigned to a given tree species, based on the list provided in this publication. This subjective rating is based on individual qualities and traits, which may vary geographically within the state because of local climate and environmental influences.
- Location rating is a value determined by the tree's placement in the landscape and the overall area in which the property is located. It is derived by the following equation: (Site \% + Contribution \% + Placement \%) $\div 3$
- Condition rating is determined by establishing the overall health and structural integrity of the tree. An assessment of condition includes roots, trunk and canopy. The appraiser and the appraisal situation determine the amount of detail in this assessment.
- Replacement Tree Costs are the cost of the tree, cost of transporting the tree to the site, planting it in the same location as the appraised tree and monitoring it during the maintenance period. This cost is subjective to location.

Example: A residential site located on Main Street has a Black Walnut, Juglans nigra, located in the rear of the site, near the garage. The tree measures 33 inches DBH, and is in good condition. The tree owners wish to have it appraised to determine the value of the tree on their property.

Using the Trunk Formula Method as defined by the Council of Tree and Landscape Appraisers as

Value $=$ Basic Tree Cost x Species Rating \% x Condition Rating \% x Location Rating \%

the formula can be expanded to determine the values for each component as:

$$
V=(R C+(B P x(A T A-A T r))) x \text { SR x CR x LR }
$$

$\mathbf{V}=$ Value of appraised plant.
$\mathbf{R C}=$ Replacement Cost for the average largest transplantable sized tree that a nursery can provide in this area. This has been determined to be $\$ 800$ for Indiana.

BP = Base Price per square inch dollar value of a tree. For Indiana, this has been determined to be $\$ 65$.

ATA = Adjusted Trunk Area value at DBH in square inches of the tree. This number is available from the chart provided in the CTLA guide.

ATr $=$ Adjusted Trunk replacement value at DBH in square inches of the average largest transplantable sized tree that a nursery can provide in Indiana. This has been found to be 4 inches, which has a trunk area of 13 square inches.

SR $=$ Species Rating value between .00 and 1.00 , which can be determined by using the table provided. This is a subjective value, which can be adjusted to a higher or lower value, depending on the location in the state.
$\mathbf{L R}=$ Location Rating value between .00 and 1.00 , and determined by rating the placement of the tree in the landscape. This value is an average of site, contribution and placement ratings.
$\mathbf{C R}=$ Condition Rating value between .00 and 1.00 for the tree, and determined by assessment of overall tree health and structure.

Using the information provided and subjectively rating the tree for appraisal, the formula values would be:

$$
\begin{aligned}
\text { Appraised Value }= & \left(\$ 800+\left(\$ 65 \times\left(835 \mathrm{in}^{2}-13 \mathrm{in}^{2}\right)\right)\right) \mathrm{x} \\
& .50 \times .88 \times .70
\end{aligned}
$$

Appraised Value $=\$ 16,703$ based on the assessment of the tree and property. This is the worth of the tree in relation to the property, site and location.

Cost of Repair calculates the cost to perform maintenance on the affected tree in order to repair damage. It includes wound treatment, cabling, bracing, pruning, pest management and associated cultural practices to improve health, such as supplemental irrigation, mulching and fertilization.

Cost of Cure is similar to Cost of Repair. This method is used to determine the cost of treatment that will return the property to the closest approximation of its original condition. This often is called "years to parity" and is a very detailed, intricate approach requiring diligence in the assessment and calculation of repairs. Both Cost of Repair and Cost of Cure approaches account for tree and debris removal, the replacement process and post-restoration maintenance.

The Income Approach is preferred when a property or segment of a property might provide income benefits. There are various methods within this approach, which includes crop values, forest appraisal and rental value.

Market Approach is based on market information derived from an investigation of property sales. The market approach will determine the market value of a property with and without the trees or their damage. This method may employ more than one approach to reach valuation. This is only one value indicator, and perhaps is best utilized as a reasonability check.

The appraisal method chosen will have a profound effect on the final value attributed to a tree or landscape. Results should be reasonable in relationship to the value of the property where it resides. Similar trees in different areas could have much different values. Studies have estimated that trees may account for up to 20 percent of the value of a residential property. In other circumstances, much lower values could result, depending on location and other factors.

There are several considerations that influence inspection and appraisal processes, and how characteristics translate into value. Laws governing appraisals dictate which method may be allowed in particular applications. Important, detailed discussions of tree appraisals can be found in the Guide for Tree Appraisal. The appraiser may assume the role of mediator, arbitrator, consulting expert or expert witness. In all situations, an appraisal might be a target for lawsuits. The appraiser should maintain proper insurance for protection. When an expert opinion is necessary, as for an insurance or legal claim, it is wise for the tree owner to consult with a professional arborist. Experience is critical to proper valuation of a tree.

Table 1. Species Rating for Landscape Trees - This list contains a sample of plants in the landscape that grow in Indiana, including native and non-native selections. This is not meant to be inclusive but, rather, representative of the majority of species found commonly in the urban forest. The ratings represent comparative values for species found in Indiana with consideration given to the following:

> - Hardiness • Durability (structural integrity) •Longevity • Biotic tolerance

These ratings do not take into consideration factors such as maintenance requirements, nonstructural tree characteristics (e.g., aesthetics) and site adaptability. Such factors are more appropriately considered in the rating of the tree's CONDITION AND LOCATION CLASSES.

NOTE: The values contained in the Species Rating Guide should not be used without following the procedures identified and explained in the Guide for Plant Appraisal, 9th Edition, authored by the Council of Tree and Landscape Appraisers, and published by the International Society of Arboriculture.

Scientific Name, Common Name	Notes	Rating
Abies concolor, White or Concolor Fir		80
Acer campestre, Hedge Maple		60
Acer xfreemanii, Freeman Maple		70
Acer ginnala, Amur Maple		60
Acer griseum, Paperbark Maple		70
Acer miyabei, Miyabe Maple		80
Acer negundo, Boxelder		20
Acer nigrum, Black Maple		80
Acer palmatum, Japanese Maple		70
Acer platanoides, Norway Maple		70
Acer pseudoplatanus, Sycamore Maple species	20	
Acer rubrum, Red or Swamp Maple		60
Acer saccharinum, Silver Maple		40
Acer saccharum, Sugar Maple		80
Acer saccharum, Sugar Maple		80
Acer tataricum, Tartarian Maple		70
Acer triflorum, Three-Flowered Maple cultivars		70
Acer truncatum, Purpleblow Maple		70
Aesculus xcarnea, Red Horsechestnut		60
Aesculus glabra, Ohio Buckeye	Prohibited-noxious	
Aesculus hippocastanum, Common Horsechestnut	20	
Aesculus pavia, Red Buckeye		60
Ailanthus altisssima, Tree of Heaven		70
Albizia julibrissin, Mimosa or Silk Tree		

Alnus glutinosa, European Black Alder	Invasive species	20
Alnus incana, White Alder		70
Alnus rugosa, Speckled Alder		70
Amelanchier, Serviceberry		70
Asimina triloba, Common Pawpaw		50
Betula alleghaniensis (lutea), Yellow Birch		50
Betula lenta, Sweet Birch		50
Betula nigra, River or Red Birch		70
Betula papyrifera, Paper Birch		40
Betula pendula, European White Birch		20
Betula populifolia, Gray Birch		40
Carpinus betulus, European Hornbeam		70
Carpinus caroliniana, American Hornbeam (Blue Beech)		70
Carya sp., Hickory	Various species	70
Castanea dentata, American Chestnut		20
Castanea mollissima, Chinese Chestnut		60
Catalpa sp., Catalpa		40
Celtis laevigata, Sugar Hackberry	Southern locations	70
Celtis occidentalis, Common Hackberry		70
Cercidiphyllum japonicum, Katsura Tree		80
Cercis canadensis, Redbud		60
Chionanthus virginicus, Fringetree		60
Cladrastis lutea (kentukea), Yellowwood		60
Cornus alternifolia, Pagoda Dogwood		70
Cornus florida, Flowering Dogwood		60
Cornus kousa, Kousa Dogwood		70
Cornus mas, Cornelian Cherry Dogwood		70
Cornus officinalis, Japanese Cornel Dogwood		70
Corylus colurna, Turkish Filbert		80
Cotinus coggygria, Common Smoke Tree		60
Cotinus obovatus, American Smoke Tree		70
Crataegus crus-galli, Cockspur Hawthorn		80
Crataegus laevigata, English Hawthorn		40
Crataegus mollis, Downy Hawthorn		50
Crataegus phaenopyrum, Washington Hawthorn		70
Crataegus xlavallei, Lavalle Hawthorn		60
Crataegus 'Vaughn,' Vaughn Hawthorn		60
Crataegus viridis 'Winter King,' Winter King Hawthorn		70
Diospyros virginiana, Common Persimmon	Male	70
Diospyros virginiana, Common Persimmon	Female	50
Elaeagnus angustifolia, Russian-Olive	Invasive species	20
Eucommia ulmoides, Hardy Rubber Tree		50

Fagus grandifolia, American Beech		80
Fagus sy/vatica, European Beech		70
Fraxinus americana, White Ash	Rating subject to EAB and treatment protocol	70
Fraxinus excelsior, European Ash	Rating subject to EAB and treatment protocol	60
Fraxinus pennsylvanica, Green Ash	Rating subject to EAB and treatment protocol	60
Fraxinus quadrangulata, Blue Ash	Rating subject to EAB and treatment protocol	70
Ginkgo biloba, Ginkgo	Male	90
Ginkgo biloba, Ginkgo	Female	60
Gleditsia triacanthos, Honeylocust		70
Gleditsia triacanthos f. inermis, Thornless Honeylocust	Improved cultivars	50
Gymnocladus dioica, Kentucky Coffeetree	Male	80
Gymnocladus dioica, Kentucky Coffeetree	Female	60
Halesia carolina, Carolina Silverbell		70
Ilex opaca, American Holly		70
Juglans cinerea, Butternut		30
Juglans nigra, Black Walnut		40
Juniperus chinensis, Chinese Juniper		60
Juniperus virginiana, Eastern Red Cedar		60
Koelreuteria paniculata, Golden Raintree		60
Larix decidua, European Larch		60
Larix kaempferi, Japanese Larch		60
Larix Iaricina, American Larch		50
Liquidambar styraciflua, Sweetgum	Seedless varieties	80
Liriodendron tulipifera, Tuliptree		70
Maclura pomifera, Osage-Orange	Invasive species	20
Magnolia acuminata, Cucumbertree Magnolia		70
Magnolia grandiflora, Southern Magnolia		60
Magnolia kobus, Kobus Magnolia		60
Magnolia xloebneri, Loebner Magnolia	Improved cultivars	70
Magnolia xsoulangiana, Saucer Magnolia		70
Magnolia virginiana, Sweetbay Magnolia	Southern locations	70
Malus, Crabapple	Cultivar-dependent	80
Metasequoia glyptostroboides, Dawn Redwood		60
Morus sp., Mulberry		40
Nyssa sylvatica, Sourgum (Black Tupelo)		80
Ostrya virginiana, Ironwood (Hophornbeam)		80
Oxydendrum arboreum, Sourwood		60

Continued on next page...

Paulownia tomentosa, Paulownia (Princess Tree)	Invasive species	20
Phellodendron amurense, Amur Corktree	Invasive species	20
Picea abies, Norway Spruce		70
Picea glauca, White Spruce		70
Picea glauca var. Densata, Black Hills Spruce		70
Picea omorika, Serbian Spruce		70
Picea pungens, Colorado Spruce		70
Pinus banksiana, Jack Pine		40
Pinus bungeana, Lacebark Pine		70
Pinus cembra, Swiss Stone Pine		70
Pinus echinata, Short Leaf Pine		50
Pinus nigra, Austrian or Black Pine		40
Pinus ponderosa, Ponderosa Pine		60
Pinus resinosa, Red Pine		50
Pinus strobus, Eastern White Pine		70
Pinus sylvestris, Scotch Pine		40
Platanus xacerifolia, London Planetree		60
Platanus occidentalis, Sycamore		70
Populus alba, White or Silver Poplar		30
Populus deltoides, Cottonwood	Male	50
Populus deltoides, Cottonwood	Female	30
Populus euroamericana, Hybrid Poplar		50
Populus grandidentata, Bigtooth Aspen		50
Populus nigra 'Italica,' Lombardy Poplar		20
Populus tremuloides, Quaking Aspen		50
Prunus americana, Wild Plum		50
Prunus armeniaca var. mandshurica, Manchurian Apricot		50
Prunus avium, Sweet Cherry		40
Prunus cerasifera, Purple Leaf Plum		40
Prunus maackii, Amur Choke Cherry		60
Prunus padus, European Bird Cherry		40
Prunus persica, Common Peach		40
Prunus sargentii, Sargent Cherry		70
Prunus serotina, Black Cherry		50
Prunus serrulata, Japanese Flowering Cherry		40
Prunus subhirtella var. pendula, Weeping Cherry		40
Prunus virginiana, Choke Cherry		40
Psuedotsuga menziesii, Douglasfir		80
Pyrus calleryana, Callery Pear	Invasive species	20
Quercus alba, White Oak		90
Quercus acutissima, Sawtooth Oak		70
Quercus bicolor, Swamp White Oak		80
Quercus coccinea, Scarlet Oak		70

Quercus ellipsoidalis, Hill's or Northern Pin Oak		60
Quercus falcata var. pagodaefolia, Cherrybark Oak	Southern locations	70
Quercus imbricaria, Shingle Oak		70
Quercus macrocarpa, Bur Oak		90
Quercus michauxii, Swamp Chestnut Oak		70
Quercus muehlenbergii, Chinquapin Oak		80
Quercus palustris, Pin 0ak		60
Quercus phellos, Willow Oak	Southern locations	70
Quercus prinus, Chestnut 0ak		70
Quercus robur, English Oak	Southern locations	80
Quercus rubra, Red Oak		70
Quercus shumardii, Shumard Oak		70
Quercus velutina, Black Oak		60
Rhamnus cathartica, Common Buckthorn	Invasive species	20
Robinia pseudoacacia, Black Locust	Invasive species	20
Salix alba 'Tristis,' Weeping Willow		40
Salix matsudana 'Tortuosa,' Corkscrew Willow		30
Salix nigra, Black Willow		40
Sassafras albidum, Common Sassafras		70
Sophora japonica, Japanese Pagoda Tree	Southern locations	70
Sorbus americana, American Mountain Ash		40
Sorbus alnifolia, Korean Mountain Ash		50
Sorbus aucuparia, European Mountain Ash		50
Syringa pekinensis, Peking Lilac		70
Syringa reticulata, Japanese Tree Lilac		70
Taxodium distichum, Baldcypress		90
Thuja occidentalis, White Cedar Arborvitae		70
Thuja orientalis, Oriental Arborvitae		60
Tilia americana, American (Basswood) Linden		70
Tilia cordata, Little Leaf Linden		60
Tilia xeuchlora 'Redmond,' Redmond Linden		80
Tilia tomentosa, Silver Linden		70
Tsuga canadensis, Canadian Hemlock		80
Ulmus, Hybrid Elms		70
Ulmus americana, American Elm		30
Ulmus carpinifolia, English Elm		30
Ulmus parvifolia, Chinese or Lacebark Elm		70
Ulmus pumila, Siberian Elm		40
Ulmus rubra, Slippery or Red Elm		20
Ulmus thomasii, Rock Elm		30
Viburnum prunifolium, Blackhaw Viburnum		70
Viburnum sieboldii, Siebold Viburnum		60
Zelkova serrata, Japanese Zelkova		60

Table 2. Condition Rating for Landscape Trees - Each plant can have any combination of the following health or structural issues, and others. The expression of symptoms and signs is subjective. The appraiser should consider the individual species characteristics and use existing circumstances as a reasonable scale for condition determination. This table is a general representation to assist in formula values.

Condition Rating	Tree Structure Consider root condition/formation, trunk condition and branch assembly and arrangement	Tree Health Consider crown indicators including vigor, density, leaf size, quality and stem shoot extensions	Formula Values
Excellent	Root plate undisturbed and clear of any obstructions. Root flare has normal development. No visible trunk defects or cavities. Branch spacing/structure and attachments are free of any defects.	Perfect specimen with excellent form and vigor, well-balanced crown. Trunk is sound and solid. No apparent pest problems. Normal to exceeding shoot length on new growth. Leaf size and color normal. Exceptional life expectancy for the species.	1.0-.90
Good	Root plate appears normal; only minor damage may be found. Possible signs of root dysfunction around trunk flare. Minor trunk defects from previous injury, with good closure; less than 25% of bark section missing. Good branch habit, minor dieback with so me signs of previous pruning. Codominant stem formation may be present. Minor corrections required.	Imperfect canopy density in few parts of the tree, 10% or less, lacking natural symmetry. Less than half normal growth rate and minor deficiency in leaf development. Few pest issues or damage, controllable. Normal branch and stem development with healthy growth. Typical life expectancy for the species.	.90-.75
Fair	Root plate reveals previous damage or disturbance and dysfunctional roots may be visible around main stem. Evidence of trunk damage or cavities with decay or defects present. Less than 30% of bark sections missing on trunk. Codominant stems are present. Branching habit and attachments indicate poor pruning or damage, which requires moderate corrections.	Crown decline and dieback up to 30% of the canopy. Overall poor symmetry. Leaf color somewhat chlorotic with smaller leaves. Shoot extensions indicate some stunting and stressed growing conditions. Obvious signs of pest problems contributing to lesser condition. Some decay areas found in main stem and branches. Below average life expectancy.	. $75-.50$
Poor	Root plate disturbance and defects indicate major damage with girdling roots around the trunk flare. Trunk reveals more than 50% of bark section missing. Branch structure has poor attachments, with several structurally important dead or broken. Canopy reveals signs of severe damage or topping, with major corrective actions required.	Lacking full crown, more than 50% decline and dieback, especially affecting larger branches. Stunting obvious with little evidence of growth on smaller stems. Leaf size and color reveals overall stress in the plant. Insect or disease infestation may be severe. Extensive decay or hollow. Life expectancy is low.	. $50-30$

Tree Appraisal • FNR-473-W

Table 3. Location Rating for Landscape Trees - Representative factors that influence location ratings and suggests formula values for various sites and applications.

Location Rating	Site Position The general appearance and quality of the site in relation to the market value in the area; overall site appearance	Site Contribution The functional and aesthetic attributes the plant has on the site overall in terms of appeal and purpose	Site Placement The effectiveness of realizing benefits and the influence of the plant on contribution to the site	Formula Values
Excellent	Arboretum Well-maintained residential area Historical district Designated parks and recreation areas	Air filtration Water purification Noise abatement Erosion control	Specimen trees in a functional landscape design Single, historic or specimen tree Outstanding aesthetic value in the landscape	1.0-. 90
Good	Suburban residential areas Golf course School/corporate campus Green spaces/memorials Cemetery Scenic parkways	Windbreaks Shade/cooling effects Specific plant aesthetic factors Structural accents	Considerable element in the landscape for design quality or function Plants in a windbreak, screen or other integral planting Planting allows maximum functional benefits	.90-75
Fair	City streets/boulevards Rural residential areas Urban streets Industrial/commercial areas	Framing views Space definition Privacy	Well-spaced planting site Tree installation in planting pits or lawn strips Mass, unplanned plantings on a site	.75-.50
Poor	Streets/roadways in rural areas Woodlots, managed Freeways/interstates Countryside, naturally occurring woodlands Woodlots, unmanaged	Traffic management Create vistas Screening	Trees with utility interaction Improper spacing with infrastructure conflicts Species with fruit or leaf litter issues Invasive species	.50-. 30

May 2018

